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The paragraph spaces of five text corpora, of different genres and
intended audiences, in four different languages, all show the same
two-scale structure, with the dimension at short distances being
lower than at long distances. In all five cases the short-distance
dimension is approximately eight. Control simulations with ran-
domly permuted word instances do not exhibit a low dimensional
structure. The observed topology places important constraints on
the way in which authors construct prose, which may be universal.

correlation dimension | language | latent semantic analysis

As we transition from paragraph to paragraph in written dis-
course, one can think of the path throughwhich one passes as a

trajectory througha semantic space.Understanding thediscourse is,
in some sense, amatter of understanding this trajectory. Although it
is difficult to predict exactly what will follow from a given discourse
context, we can ask a broader question. Does the cognitive system
impose any fundamental constraints on the way in which the dis-
course evolves?
To investigate this issue, we constructed semantic spaces for five

corpora, of different genres and intended audiences, in four dif-
ferent languages and then calculated the intrinsic dimensionality of
the paragraph trajectories through these corpora. Each trajectory
can be embedded in an arbitrary number of dimensions, but it has
an intrinsic dimensionality, independent of the embedding space.
For instance, in latent semantic analysis (LSA) applications, it is
typical to use a 300-dimensional space (1).However, the points that
represent the paragraphs in this 300-dimensional space do not fill
the embedding space; rather they lie on a subspace with a dimen-
sion lower than the embedding dimension. The fact that a low-
dimensional structure can be embedded in a higher dimensional
space is routinely used in the study of nonlinear dynamic systems, in
which the embedding theorem (2) relates the dimensionality of the
dataset under study to the dimensionality of the dynamics that
describes it.
Historically, the dimensionality of the discourse trajectory has

been implicitly assumed to be very large, but it has never been
calculated. Here we show that the dimensionality of the trajectory
is surprisingly low (approximately eight at short distances) and
that its structure is probably universal across human languages.
Although the question of dimensionality has not generally been
considered before, it can be used to guide the development of new
models of prose, which are constrained to reproduce the observed
dimensional structure.

Modeling Semantics
The first step toward being able to calculate the dimensionality of
text is to create a vector representation of the semantics conveyed
by each paragraph. Recent years have seen increasing interest in
automated methods for the construction of semantic representa-
tions of paragraphs [e.g., LSA (3), the topics model (4, 5), non-
negative matrix factorization (6), and the constructed semantics
model (7)]. These methods were originally developed for use in
information retrieval applications (8) but are now widely applied in
both pure and applied settings (3). For example, LSA measures
correlate with human judgments of paragraph similarity; correlate
highly with humans’ scores on standard vocabulary and subject
matter tests; mimic human word sorting and category judgements;
simulate word–word and passage–word lexical priming data; and

accurately estimate passage coherence. In addition, LSA has found
application inmany areas, including selecting educational materials
for individual students, guiding on-line discussion groups, providing
feedback to pilots on landing technique, diagnosing mental disor-
ders from prose, matching jobs with candidates, and facilitating
automated tutors (3).
By far themost surprising application of LSA is its ability to grade

student essay scripts. Foltz et al. (9) summarize the remarkable
reliability with which it is able to do this, especially when compared
against the benchmark of expert human graders. In a set of 188
essays written on the functioning of the human heart, the average
correlation between two graders was 0.83, whereas the correlation
of LSA’s scores with the graders was 0.80. A summary of the per-
formance of LSA’s scoring compared with the grader-to-grader
performance across a diverse set of 1,205 essays on12 topics showed
an interrater reliability of 0.7 and a rater-to-LSA reliability of 0.7.
LSA has also been used to grade two questions from the stand-
ardized Graduate Management Admission Test. The performance
was comparedagainst two trainedgraders fromEducationalTesting
Services (ETS). For one question, a set of 695 opinion essays, the
correlationbetween the twograderswas 0.86, andLSA’s correlation
with the ETS grades was also 0.86. For the second question, a set of
668 analyses of argument essays, the correlation between the two
graders was 0.87, whereas LSA’s correlation to the ETS grades
was 0.86.
In the research outlined above, LSA was conducted on para-

graphs. However, it is known to degrade rapidly if applied at the
sentence level, where capturing semantics requires one to estab-
lish the fillers of thematic roles and extract other logical rela-
tionships between constituents. Nevertheless, to achieve the
results outlined above, LSA must be capturing an important
component of what we would typically think of as the semantics or
meaning of texts. In this study, we investigate the geometric
structure of this kind of semantics.

The Correlation Dimension
There are many different dimensions that can be defined for a
given dataset. They include the Hausdorff dimension, the family
of fractal dimensions, Dn (capacity, D0; information, D1; corre-
lation, D2, etc), the Kaplan-Yoke dimension, etc. (10). A usual
choice for small datasets is the correlation dimension (11)
because it is more efficient and less noisy when only a small
number of points is available. It can be shown that Dcapacity ≥
Dinformation ≥ Dcorrelation, but in practice almost all attractors
have values of the various dimensions that are very close to each
other (10, 12).
The correlation dimension is derived by considering the cor-

relation function

Author contributions: I.D., S.D., andW.L.O. designed research; I.D., S.D., andW.L.O. performed
research; I.D., S.D., and W.L.O. analyzed data; and I.D., S.D., andW.L.O. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.
1Present address: BAE Systems, Washington, DC 20037.
2To whom correspondence should be addressed. E-mail: simon.dennis@gmail.com.

4866–4871 | PNAS | March 16, 2010 | vol. 107 | no. 11 www.pnas.org/cgi/doi/10.1073/pnas.0908315107

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 

mailto:simon.dennis@gmail.com
www.pnas.org/cgi/doi/10.1073/pnas.0908315107


www.manaraa.com

CðlÞ ¼ 2
NðN − 1Þ∑

N

i¼1
∑
N

j¼1ðj≠iÞ
Hðl− jX!i − X

!
j jÞ; [1]

where X
!

i is an M dimensional vector pointing to the location of
the ith point in the dataset in the embedding space, M is the
number of dimensions within which the data are embedded, N is
the total number of data points, and H is the Heaviside function.
The correlation function is therefore the normalized count of the
number of distances between points in the dataset that are less
than the length l. The correlation dimension, ν, is then given by

lim
l→0;N→∞

C
�
l
�
∝ l ν: [2]

In other words, the correlation dimension is given by the slope of
the ln[C(l)] vs. ln(l) graph.
The correlation dimension captures the way that the number of

points within a distance l scales with that distance. For points on a
line, doubling the distance l would double the number of points
that can be found within that distance. For points on a plane, the
number of points within a distance l quadruples as l doubles. In
general, the number of points within distance l will scale as lν,
where ν is the correlation dimension (Fig. 1A).
The correlation dimension, as well as all other dimensions, are

strictly defined only at the limit l→0 (with N→∞). In practice, the
limit essentially means a length scale that is much smaller than any
other length scale of the system. With that definition in mind, one
can envision geometric structures that exhibit different well-defined
dimensions at different length scales, as long as those length scales
are well separated. A typical example is a long hollow pipe. At
length scales longer than its diameter, the pipe is one-dimensional.
At intermediate scales, between the diameter of the tube and the
thickness of the wall, the pipe is two-dimensional. At scales shorter
than the wall thickness, the pipe looks three-dimensional. Fig. 1B

shows a plot of the correlation function for such a structure.We see
that the three scales are clearly distinguishable, with narrow tran-
sition regions around the length scales of the wall thickness and
diameter, as expected. A similar example in the reverse order is a
large piece of woven cloth. It looks two-dimensional at long scales,
but at short scales it is composed of one-dimensional threads. This
is the picture that the five language corpora that we have studied
present; they look low-dimensional at short scales and higher-
dimensional at long scales.

Description of the Corpora
We have calculated the correlation dimension of five corpora, in
English, French, modern and Homeric Greek, and German. The
English corpus includes text written for children as well as adults,
representing the range of texts that a typical US college freshman
will have encountered. The French corpus includes excerpts from
articles in the newspaper Le Monde, as well as excerpts from
novels written for adults. The modern Greek corpus comprises
articles in the political, cultural, economic, and sports pages of the
newspaper Eleftherotypia, as well as articles from the political
pages of the newspaper Ta Nea. The German corpus includes
articles from German textbooks and text extracted from Internet
sites and is intended to represent the general knowledge of an
adult native speaker of German. The Homeric corpus consists of
the complete Iliad andOdyssey. TheHomeric corpus also contains
large bodies of contiguous text, whereas the other four corpora
are made up of fragments that are at most eight paragraphs long.
The paragraphs (stanzas for Homer) in all five corpora are mostly
80–500 words long. The English corpus includes 37,651 para-
graphs, the French 36,126, the German 51,027, the modern Greek
4,032, and the Homeric 2,241 paragraphs.

Calculating Paragraph Vectors
For the majority of the results presented in this article, we used
the method of LSA (3) to construct paragraph vectors. For each
corpus, we construct a matrix whose elements, Mij, are given by

Mij ¼ Sj ln
�
mij þ 1

�
; [3]

where mij is the number of times that the jth word type is found
in the ith paragraph. j ranges from one to the size of the
vocabulary and i ranges from one to the number of paragraphs.
Further,

Sj ¼ 1þ∑N
i¼1PijlnðPijÞ
lnðNÞ [4]

is the weight given to each word, which depends on the infor-
mation entropy of the word across paragraphs (13). In the above
expression

Pij ¼ mij

∑N
i¼1mij

[5]

is the probability density of the jth word in the ith paragraph, and
N is the total number of paragraphs in the corpus (13).
Given the matrix M, we then construct a reduced representa-

tion by performing singular value decomposition and keeping only
the singular vectors that correspond to the n largest singular
values. This step relies on a linear algebra theorem, which states
that anyM × Nmatrix A withM > N can be written as A= USVT,
where U is an M × N matrix with orthonormal columns, VT is an
N × N matrix with orthonormal rows, and S is an N × N diagonal
matrix (14). By writing the matrix equation as

A 

B

Fig. 1. The measured dimensionality of a long pipe. (A) Schematic repre-
sentation of the scaling of the correlation function with distance; the number
of points within a distance r scales as rD. (B) Correlation function for 100,000
points randomly distributed so as to define a hollow tube of length unity. The
radius of the tube is 10−2 and the thickness of the tube wall 10−4. The slopes
give dimensions of 3.0, 2.0, and 1.0, respectively, at length scales that are
smaller than the thickness of the wall, between the thickness of the wall and
the diameter of the tube, and longer than the diameter of the tube.
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Aij ¼ ∑
N

l¼1
UilSlVjl; [6]

it is clear that for a spectrum of singular values Sl that decays in
some well-behaved way, the matrix A can be approximated by the
n highest singular values and corresponding singular vectors. LSA
applications achieve best results by keeping typically 300 values at
this step (1). The number of singular values that we keep in the
five corpora ranges from 300 to 420.

Measurements of the Correlation Dimension
In calculating the correlation dimension of the corpora, we use
the normalized, rather than the full, paragraph vectors. The
choice is motivated by the observation that the measure of
similarity between paragraphs used in LSA applications is the
cosine of the angle between the two vectors. By using the cosine
as the similarity measure, the method deemphasizes the impor-
tance of vector length to the measure of semantic distance.
Vector length is associated with the length of the paragraph the
vector represents; two paragraphs can be semantically very
similar, though being of significantly different length. However,
the cosine is not a metric, so we use the usual Cartesian distance,

Dab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðai − biÞ2
q

, for the dimension calculations, but we
will use it with the normalized vectors. This is equivalent to
defining the dimensionality of the Norwegian coast, for example,
by using the straight-line distances between points on the coast
instead of the usual surface distances. The two are equivalent
over short scales but can be expected to diverge somewhat over
distance scales comparable to the radius of the Earth. Because
angular distances in language corpora are seldom greater than
π/2, both the arc length and the Cartesian metrics give similar
results for all but the longest scales.
There are several ways one can calculate the correlation dimen-

sion (e.g., ref. 15; see also an extensive review in ref. 16). One of the
earliest methods is the maximum likelihood estimate (17), which is
known in thedynamics literature as theTakensestimate (18, 19); the
estimate was proposed independently by Ellner (20) and again
recently by Levina and Bickel (21). However, although the Takens
estimate is rigorously a maximum likelihood estimate, in practice, if
weneed to calculate the correlationdimensionofa structureoveran

intermediate range of distances we need to specify the end points of
each linear region of interest, and that choice influences the esti-
mate. To avoid this problem, we chose to estimate the slopes with a
“bent-cable” regressive method (22). The bent-cable model as-
sumes a linear regime, followed by a quadratic transition compo-
nent, followed by another linear regime, described by the equation:

f ðtÞ ¼ b0 þ b1t þ b2qðtÞ; [7]

where

qðtÞ ¼ ðt− τ þ γÞ2
4γ

Ifjt− τ j≤γg þ ðt− τÞIft> τ þ γg: [8]

It is commonly used in describing ecological phase transitions and
is particularly useful in our case, because it allows us to capture
the quadratic transition between the low and upper scales and
avoid contamination of the slope estimates from this region (note
that the lower slope estimate is given by b1 and the upper slope
estimate by b1 + b2).
Fig. 2A shows the log of the number of distances, N, that are

less than l plotted against the log of l for the English corpus, as
well as the bent-cable fit and slope estimates. The Takens esti-
mates are also provided in the caption for comparison purposes.
Fig. 2 B–E shows the same plot for the French, Greek, German,
and Homeric corpora, respectively. The bent-cable estimates for
the dimensionality of the short and long distances, respectively,
are 8.4 and 19.4 for the English corpus, 6.9 and 18.5 for German,
8.7 and 11.8 for French, 7.9 and 23.4 for Greek, and 7.3 and 20.9
for Homer. All five corpora clearly show a “weave-like” struc-
ture, in which the dimensionality at short distances is smaller
than the dimensionality at long distances. Furthermore, the value
of the low dimension is approximately eight for all five corpora,
suggesting that this may be a universal property of languages.
We carried out K-fold cross-validation for the bent-cable model

and several alternative models to make sure that the estimates of
dimension were based on models that fit the data well without
being overly complex (see, e.g., ref. 23 for a discussion of K-fold
cross-validation). Four models were cross-validated: the bent-
cable regression model and polynomial regression models of
degree 1 (linear), 2, and 3. We were especially interested in

A B C

D E

Fig. 2. The measured dimension-
ality of the five corpora. (A) the
English corpus, (B) the French
corpus, (C) the modern Greek cor-
pus, (D) the German corpus, (E)
Homer. All corpora exhibit a low-
dimensional structure, with the
dimensionality at long scales being
higher than at short scales. The
Takens estimates are 7.4 and 19.8
for the English corpus, 9.1 and 13.1
for the French, 8.6 and 28.3 for the
Greek, 7.4 and 22.2 for the Ger-
man, and 8.2 and 25.3 for Homer.
The solid lines show the best-fitting
bent-cable regression.
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showing that the bent-cable model is superior to the quadratic
polynomial, so as to justify the assertion that there are two linear
regions of the correlation dimension function. To carry out cross-
validation, the data for each correlation dimension plot were
randomly divided equally into 10 samples or folds. For each fold, a
predictive model was developed from the nine remaining folds.
The predictive model was then applied to the held-out fold, and
the residual sum of squares for the predictions of that model was
calculated (CV RSS). The mean CV RSS across the 10 folds
served as a measure of predictive validity—models with lower
values are better models than those with higher values. Table 1
displays the CV RSS for each corpus and model. The bent-cable
regression model had the lowest CV RSS for each row of the
table, which confirms the impression that it is a good descriptive
model for the correlation dimension functions.
As a control test, we also calculated the correlation dimension

for a space constructed by randomly combining words from the
English space. To construct the randomized English corpus, we
build each paragraph in turn by taking at random, and without
replacement, a word from the corpus until we reach the length of
the original paragraph, and we repeat the process for all of the
paragraphs. It is thus clear that the randomized corpus contains
the exact number of paragraphs and words as the original, and
that all word frequencies are also exactly the same; however, the
word choice for each paragraph has been permuted. Fig. 3 shows
a plot of the correlation function for that corpus. The number of
paragraphs, the length of each paragraph, and the numbers of
occurrences of each word are the same in the two corpora, but
the random corpus does not have a low-dimensional structure.
Instead the points are space-filling within the limitations of the
sample size. This implies that the observed low-dimensional
structure is a property of the word choice in the paragraphs and
not a property of the word frequency or paragraph length dis-
tributions of the corpus.
In addition to LSA, several methods for modeling the semantic

relationships between paragraphs have been developed in recent
years. We replicated the results for the English corpus with two of
these methods: the topics model (4, 5) and the nonnegative matrix
factorization (NMF) (6). Unlike LSA, both of these methods yield
semantic space-like representations of paragraphs with inter-
pretable components. For example, a given topic from a topics
model or NMF component might code “finances”, so that para-
graphs to do with “money” or “financial institutions” are asso-
ciated with that topic or component.
The topics model focuses on the probability of assigning words

from a fixed vocabulary to word tokens in a paragraph. For a given
token, words related to the gist of a paragraph should have high
probability, even when they do not appear in the paragraph. For
example, for a paragraph about finances, the probability of the
word “currency” should be significantly higher than the proba-
bility of a random word, such as “frog,” even if neither word
appeared in the paragraph. To accomplish this type of general-
ization, the model includes latent random variables called topics.

For each topic, z, there is a separate distribution over words,
P(w | z). The latent variables allow for a compressed representa-
tion of paragraphs as a distribution over topics, P(z). The number
of topics is arbitrary and is typically set to several hundred. The
words that appear in paragraphs are related to topics through a
generative process, which assumes that each word in a paragraph
is selected by first sampling a topic from P(z) and then sampling a
word from P(w | z). The probability of words within paragraphs is
given by

PðwiÞ ¼ ∑
T

j¼1
Pðwi j zi ¼ jÞPðzi ¼ jÞ; [9]

where i indexes the word tokens within a paragraph, and j
indexes the topics.
The generative process can be inverted with Bayesianmethods to

identify topics that are most probable given the corpus and rea-
sonable priors.Additional assumptions need to bemade to estimate
the parameters of the model. For example, Steyvers and Griffiths
(5, 24) assume that P(z) and P(w | z) are distributed as multinomials
with Dirichlet priors. Once topics distributions over all paragraphs
are estimated, the similarity of pairs of paragraphs can in turn be
estimated by calculating the divergence of their distributions.
Fig. 4 displays the correlation function for the topic distributions

for the English corpus that were estimated with the method of
Steyvers and Griffiths (5, 24). The number of topics was set to 600
on the basis of previous research (4), and a stop-list was used. A
stop-list is a set of high-frequency function words that are excluded
to prevent them from dominating the solution. Stop-listing was not
necessary for LSA, because its weighting procedure reduces the
impact of high-frequency words. The distance between pairs of
paragraphs was calculated with the square root of the Jensen-
Shannon divergence. Because this measure has been shown tomeet
metric criteria (25, 26), it is more appropriate for the correlation
dimension analysis than other measures of divergence that do not
meet these criteria, such as the Kullback-Leibler divergence. Note
that the two-level structure is clearly replicated, although the
dimension estimates are lower. We did not expect to obtain the
same estimates, given that the spatial assumptions of the correla-
tion dimension analysis are not met (the axes of the space are not
orthogonal). Nevertheless, the weave structure remains.
To obtain a converging estimate of dimensionality using a dif-

ferent dimensionality reduction algorithm, we chose to implement

Table 1. CV RSS for each corpus and model

Corpus Linear Poly. 2 Poly. 3 Bent-cable

English 3.24 (0.95) 0.30 (0.20) 0.21 (0.09) 0.05 (0.04)
English topics 29.04 (4.99) 1.27 (0.14) 0.39 (0.15) 0.10 (0.05)
English NMF 22.38 (2.68) 2.72 (0.31) 0.21 (0.05) 0.11 (0.04)
German 2.53 (1.32) 0.17 (0.04) 0.14 (0.17) 0.03 (0.06)
French 0.68 (0.15) 0.04 (0.01) 0.03 (0.02) 0.01 (0.01)
Greek 24.41 (4.02) 4.31 (0.38) 0.67 (0.15) 0.26 (0.06)
Homer 7.30 (2.87) 0.35 (0.06) 0.25 (0.15) 0.11 (0.03)

Values are mean (SD). The models include polynomial regression (Poly.)
with degree 1 through 3 and the bent-cable regression model.
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Fig. 3. The measured dimensionality of the randomized English corpus. The
randomized corpus does not show the low-dimensional structure of the
English corpus, and it is space-filling within the limitations of the number of
points used. This implies that the low-dimensional structure is a property of
the word choice in the paragraphs and not of paragraph length or word
frequency in the corpus.
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NMF (6). NMF has also been applied to calculate paragraph sim-
ilarity, and, like the topics model, has been found to produce
interpretable dimensions (6). Unlike the topics model, however,
the version of NMF that we used is predicated on the minimization
of squared Euclidean metric and so is more directly comparable to
the LSA case. Furthermore, although the dimensions that NMF
extracts are not constrained to be orthogonal as in LSA, in practice,
the factors that are commonly produced in text processing domains
tend to be approximately orthogonal, and so it is reasonable to
think that dimensionality estimates based onNMF and LSA should
be similar.
To carry out NMF, standard LSA preprocessing was carried

out on the term–paragraph counts for the English corpus (see
above). The resulting nonnegative matrix M was then approxi-
mated by the product of two nonnegative matrices, W and H.
Recall that the rows of M hold the n transformed counts for each
of the p paragraphs. Hence,

M ¼ WH; [10]

where M is p × n,W is p × r, and H is r × n. The value of r was set
to 420, which is the same number of dimensions for the LSA
model. A multiplicative update rule of Lee and Seung (6) was
applied to find values of W and H that minimize the recon-
struction error (D) between M and WH, as measured by the
Euclidean objective function,

D ¼ ∑
i;j
ðMij − ðWHÞijÞ2: [11]

The Lee and Seung method requires that the columns of W are
normalized to unit length after each training iteration, so that the
solution is unique. The Euclidean distance between normalized
rows of the final W estimates the similarity between the corre-
sponding paragraphs in the NMF space.
Fig. 5 displays the correlation function for the NMF space based

on the distances between all pairs of paragraphs (i.e., rows ofW) for
theEnglish corpus. Note that the two-level structure that appears in
Fig. 2A is replicated once again. As in the case of the topics model,
this replication is remarkable when we consider that not all of the
assumptions of the correlation dimension analysis are met. Note
also that the dimension estimates aremuch closer to those obtained
with LSA, perhaps because the assumptions are better met.

Discussion
The results reported above place strong constraints on the top-
ology of the space through which authors move as they construct
prose and correspondingly the space through which readers move
as they read prose. In all five corpora there are two distinct length
scales. At the shorter length scale the dimensionality is ≈8 in each
case, whereas at the longer scale the dimensionality varies from
≈12 to≈23. Furthermore, the control simulations imply that these
dimensionality are directly related to word choice and not to other
properties of the corpora, such as the distribution of word fre-
quencies or the distribution of paragraph lengths.
The above results can guide the development of models of lan-

guage. Perhaps the simplest way one could attempt to characterize
the paragraph trajectory would be as a random walk model in an
unbounded Euclidean space. In such a model, each paragraph
would be generated by drawing amultivariateGaussian sample and
adding that to the location of the previous paragraph. Such amodel
is implicitly assumed in applications of LSA to the testing of textual
coherence (8) and to textual assessment of patients for mental ill-
nesses such as schizophrenia (27). However, such models cannot
reproduce the observed weave-like dimensional structure.
So what could produce the observed structure? To investigate

this question, we implemented a version of the topics model (as
discussed above). Rather than train the model on a corpus, how-
ever, we used the model to generate paragraphs on the basis of its
priors. We set the number of topics to eight and generated 1,000
paragraphs, each 100 words long. The Dirichlet parameter was set
to 0.08, and each topic was associated with 500 equiprobable and
unique words. That is, there was no overlap in the words generated
fromdifferent topics. This later assumption is a simplification of the
original model that was used to avoid having to parameterize the
amount of overlap. Fig. 6 shows the correlation plot derived from
this corpus by applying LSA with 100 dimensions. It displays the
two-scale structure with a lower dimensionality of 8.1 and an upper
dimensionality of 23.0, approximating the pattern seen in the data.
To understand how the model captures the two-scale structure,

consider the topic distributions generated from the Dirichlet prior.
With a parameter of 0.08, most samples from the Dirichlet dis-
tribution have a single topic that has amuch higher probability than
the other topics. Paragraphs generated from these samples have
words drawn from just one pool. However, there is a subset of

−0.8 −0.6 −0.4 −0.2 0.0 0.2
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Fig. 5. The English corpus using the NMF model. Paragraph distances are
calculated using Euclidean distance. Although the dimensions are not con-
strained tobeorthogonal, and thereforeonewouldnotexpect the correlation
dimension to give interpretable results, a weave-like two-scale dimensional
structure is again evident. The randomized corpus is again space-filling to the
limit of the dataset, suggesting that the observed dimensional structure is a
property of theword choice in the paragraphs and not of paragraph length or
word frequency in the corpus.
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samples that have two topics with substantive probability. Para-
graphs generated from these samples have words drawn from two
of the pools. The paragraph pairs that appear in the upper region
involve comparisons between paragraphs that are dominated by
topics that are different from each other. The paragraph pairs that
appear in the lower region involve comparisons between one
paragraph that is dominated by a single topic and one paragraph

that has a substantive probability for the same topic but also in-
cludes another topic with reasonable probability. The common
topic brings the representations of these paragraphs closer to-
gether. Because there are eight topics, there are eight dimensions in
which these comparisons can vary. The model demonstrates that it
is not necessary to posit a hierarchically organizedmodel to account
for the two-scale structure.

Conclusions
The correlation dimensions offive corpora composed of texts from
different genres, intended for different audiences, and in different
languages—English, French, Greek, Homeric Greek, and
German—were calculated. All five corpora exhibit two distinct
regimes, with short distances exhibiting a lower dimensionality
than long distances. In each case, the dimensionality of the lower
regime is approximately eight. This pattern is not observed if words
are permuted to disrupt word cooccurrence. The observed struc-
ture places important constraints onmodels of constructing prose,
which may be universal.
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